Скачать [БХВ] Машинное обучение с PyTorch и Scikit-Learn [Юси Хэйден Лю, Вахид Мирджалили, Себастьян Рашка]

Информация
Цена: 130 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
395 793
Реакции
38 908
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
[БХВ] Машинное обучение с PyTorch и Scikit-Learn [Юси Хэйден Лю, Вахид Мирджалили, Себастьян Рашка]
Ссылка на картинку
Исчерпывающее руководство по машинному (МО) и глубокому обучению с использованием языка программирования Python, фреймворка PyTorch и библиотеки scikit-learn. Рассмотрены основы МО, алгоритмы для задач классификации, классификаторы на основе scikit-learn, предварительная обработка и сжатие данных, современные методы оценки моделей и объединение различных моделей для ансамблевого обучения. Рассказано о применении МО для анализа текста и прогнозировании непрерывных целевых переменных с помощью регрессионного анализа, кластерном анализе и обучении без учителя, показано построение многослойной искусственной нейронной сети с нуля. Раскрыты продвинутые возможности PyTorch для решения сложных задач. Описано применение глубоких сверточных и рекуррентных нейронных сетей, трансформеров, генеративных состязательных и графовых нейронных сетей, Особое внимание уделено обучению с подкреплением для систем принятия решений в сложных средах.

Разрабатывайте модели машинного и глубокого обучения с помощью Python

Перед вами не только исчерпывающее руководство по машинному и глубокому обучению с использованием Python, фреймворка PyTorch и библиотеки scikit-learn. но и справочник, к которому вы будете постоянно возвращаться при создании систем машинного обучения. Книга подробно описывает все основные методы машинного обучения и содержит четкие пояснения, визуализации и примеры. Автор стремится научить читателя принципам самостоятельного создания моделей и приложений, а не просто следовать жестким инструкциям.

Описаны новые дополнения к библиотеке scikit-learn. Рассмотрены различные методы машинного и глубокого обучения для классификации текста и изображений. Рассказано о генеративно-состязательных сетях (GAN) для синтеза новых данных и обучения интеллектуальных агентов Освещены последние тенденции в области глубокого обучения, включая введение в графовые нейронные сети и крупномасштабные преобразователи, используемые для обработки естественного языка (NLP). Книга будет полезна как начинающим разработчикам на Python, слабо знакомым с машинным обучением, так и опытным, желающим углубить свои знания.

Вы изучите:
  • фреймворки, модели и методы машинного обучения, применимые к широкому кругу задач и наборов данных;
  • библиотеку scikit-learn для машинного обучения и фреймворк PyTorch для глубокого обучения;
  • приемы обучения классификаторов на изображениях, тексте и т. д.;
  • средства создания и обучения нейронных сетей, преобразователей и графических нейронных сетей;
  • передовые методы оценки и настройки моделей.
Вы сможете глубже понять:
  • прогнозирование непрерывных целевых результатов с помощью регрессионного анализа;
  • особенности текстовых данных и данных из социальных сетей с помощью тонального анализа.

Издательство: БХВ
Год издания: 2023 г.
Объем: 688 стр.
Формат книги: PDF (скан)
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
pytorch scikit-learn бхв вахид мирджалили машинное обучение с pytorch и scikit-learn себастьян рашка юси хэйден лю
Похожие складчины
Kail
Ответы
0
Просмотры
529
Kail
Kail
Kail
Ответы
0
Просмотры
214
Kail
Kail
Kail
Ответы
0
Просмотры
116
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.